Microsoft word - phd thesis monique shaker verlag 2.doc
The Glyoxalase System, Inhibition of Thioredoxin
Reductase and Use of Methylene Blue as Drug
Development Strategies against the Malarial
Parasite Plasmodium falciparum
A thesis submitted in fulfilment of the German degree
doctor rerum naturalium (Dr. rer. nat.)
Faculty of Biology and Chemistry (FB 08)
Justus-Liebig-University, Giessen, Germany
Monique B. Akoachere
The work reported in this thesis was carried out during the period of April 2002 to September 2005 at the Institute of Nutritional Biochemistry, Interdisciplinary Research Centre, Justus-Liebig-University, Giessen, Germany. The work was supported by the German Academic Exchange Service (DAAD) and supervised by Prof. Dr. med. Katja Becker-Brandenburg and Prof. Dr. Albrecht Bindereif.
Prof. Dr. Juergen Mayer
Faculty of Biology and Chemistry
Justus-Liebig-University Giessen
Karl-Glöckner-Strasse 21, 35394 Giessen
Prof. Dr. Albrecht Bindereif
Faculty of Biology and Chemistry
Justus-Liebig-University Giessen
Heinrich-Buff-Ring 58, 35392 Giessen
Prof. Dr. med. Katja Becker-Brandenburg
Faculty of Agricultural and Nutritional Sciences, Home Economics and Enviromental Management
Justus-Liebig-University Giessen Heinrich-Buff-Ring 26-32, 35392 Giessen
Additional Jury Member: Prof. Dr. Rudolf Geyer
Justus-Liebig-University Giessen Friedrichstrasse 24, 35392 Giessen
Berichte aus der Biochemie
Monique B. Akoachere
The Glyoxalase System, Inhibition of Thioredoxin
Reductase and Use of Methylene Blue as Drug
Development Strategies against the Malarial
Parasite Plasmodium falciparum
D 26 (Diss. Universität Giessen)
Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes
Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data is available in
the internet at http://dnb.ddb.de.
Zugl.: Giessen, Univ., Diss., 2005
Copyright Shaker Verlag 2005All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form or by any means, electronic,mechanical, photocopying, recording or otherwise, without the prior permissionof the publishers.
Printed in Germany.
ISBN 3-8322-4687-8ISSN 1434-5536
Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 AachenPhone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9Internet: www.shaker.de • eMail:
[email protected]
This thesis is the original work of Akoachere Monique Bate. Other sources of information
have been properly quoted. The work has not been used to obtain any other university
Acknowledgements
To begin, I would like to say that I am extremely thankful to Professors Albrecht Bindereif and Katja Becker-Brandenburg for not only giving me the opportunity to carry out my PhD project at the University of Giessen, Germany, but also for supervising and standing by the project during the entire course. To Katja, I wish to say thank you for your continuous scientific and personal encouragement especially in difficult times. Special thanks go to Prof. Heiner Schirmer for his support and collaboration throughout the PhD project. I would also like to thank the "Deutscher Akademischer Austauschdienst" (DAAD) for the unrelentless financial support throughout the PhD project and during the German language course at the Goethe Institute of Göttingen. I would also like to thank the entire working group of Professor Becker-Brandenburg for the friendly working environment. To Stefan Rahlfs and Rimma Iozef, I will say thank you for your support and collaboration on the glyoxalase system. Elisabeth, I do appreciate the training I got from you in the cell culture laboratory. To Xu Ying and Taiwo Ojurongbe, I say thank you for helping to carry out statistical analysis of the results obtained from drug combination assays. To the other PhD colleagues in the lab, Julia Bolt-Ulschmidt, Christine Nickel, Sabine Urig, Marcel Deponte, Sasa Koncarevic, Kathrin Buchholz and Boniface Mailu, I say thanks for all the ideas I have gained from you during our numerous discussions. To the other co-workers of the group, Tammy, Ulli, Beate, Marina, Marita, Johanna, Simone, Nicole, Annette and Doris, I really do appreciate whatever help – in one way or the other – I received from you. I would like to thank the entire Akoachere family for their encouragement with respect to the PhD project. Special thanks go to my brother Ashu Akoachere for helping me find my supervisor Katja and also for his struggle concerning the DAAD scholarship. To my Dad, E. B. Akoachere, whose dream had always been that I become a "doctor" right from the time I was still a kid, I am happy that I have been able to fulfil this dream of yours while you are still alive. To my Mum, Felicia Akoachere, I wish to thank you for your steadfast prayers and kindly support for all your kids. To my other brethren, Alfred, George, Johnson, Barbara, Oben, Nkongho, Arrey, Ayuk, Paula, Julliet and Kate, I say thanks for being there for me. To friends (Sylvia, Adrienne), I say thanks for the encouragement you gave me in all aspects of life. To wellwishers most of whom I got to know during my stay in Giessen, thank you all for the good times we shared. Last and most important, my sincere appreciation goes to God Almighty for His continuous love, protection and guidance over me.
Original Publications
1. Andricopulo, A. D., Nickel, C., Krogh, R., Akoachere, M., McLeish, M. J., Davioud-
Charvet, E., Kenyon, G. L., Arscott, D. L., Williams, C. H. Jr. and Becker, K. (2005). Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents. Submitted to Bioorganic and Medicinal Chemistry Letters.
2. Andricopulo, A. D., Akoachere, M., Krogh, R., Nickel, C., McLeish, M. J., Davioud-
Charvet, E., Kenyon, G. L., Arscott, D. L., Williams, C. H. Jr. and Becker, K. (2005). Thioredoxin reductase of the malarial parasite Plasmodium falciparum – Inhibitor development as a basis for novel chemotherapeutic strategies. Flavins and Flavoproteins in press.
3. Akoachere, M., Buchholz, K., Fischer, E., Burhenne, J., Haefeli, W., Schirmer, H. and
Becker, K. (2005). In vitro assessment of methylene blue on chloroquine sensitive and resistant Plasmodium falciparum strains reveals synergistic action with artemisinins. Antimicrobial Agents and Chemotherapy 49: 4592-4597.
4. Akoachere, M., Iozef, R., Rahlfs, S., Deponte, M., Mannervik, B., Creighton, D. J.,
Schirmer, H., Becker, K. (2005) Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biological Chemistry, 386: 41-52.
5. Cho-Ngwa, F., Akoachere, M. and Titanji, V. P. (2003). Sensitive and specific
serodiagnosis of riverblindness using Onchocerca ochengi antigens. Acta Tropica 89: 25-32.
Abstracts in Meetings
• Akoachere, M., Buchholz, K., Fischer, E., Burhenne, J., Haefeli, W., Schirmer, H. and Becker,
K. (2005). Methylene blue in antimalarial drug combinations. In vitro effects on Plasmodium falciparum strains. 54th Annual Meeting of the American Society of Tropical Medicine and Hygiene (ASTMH), Washington D. C., USA.
• Akoachere, M., Iozef, R., Rahlfs, S., Deponte, M., Schirmer, R. H. and Becker, K. (2005).
Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts.
Drug development seminar, Bernhardt Nocht Institute, Hamburg.
• Andricopulo, A. D., Nickel, C., Krogh, R., Akoachere, M., McLeish, M. J., Davioud-Charvet,
E., Kenyon, G. L., Arscott, D. L., Williams, C. H. Jr. and Becker, K. (2005). Novel inhibitors of the thioredoxin reductase from Plasmodium falciparum as potential antimalarial agents. 15th International Symposium on Flavins and Flavoproteins, Shonan Village, Japan.
• Akoachere, M. B., Iozef, R., Rahlfs, S., Deponte, M., Schirmer, R. H. and Becker, K. (2005).
Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparism with their human counterparts.
First Annual BiolMalPar Conference Meeting, EMBL, Heidelberg.
• Rahlfs, S., Iozef, R., Akoachere, M., Schirmer, R. H. and Becker, K. (2004). Glyoxalase I of
the malarial parasite Plasmodium falciparum: Evidence for subunit fusion. Jahrestagung der Deutschen Gesellschaft für Parasitologie, Würzburg.
• Akoachere, M., Iozef, R., Rahlfs, S., and Becker, K. (2003). The glyoxalase system of the
malarial parasite Plasmodium falciparum. MBML (Molecular Biology and Medicine of the Lung) Retreat Program, Marburg.
Table of Contents
Table of Contents
1 Introduction and Rationale . 1
1.1.1 The Anopheles vector . 2
1.1.2 Life cycle of the parasite . 3
1.1.3 Pathophysiology of the disease . 4
1.1.4 Diagnosis of malaria. 4
1.1.5 Control . 6
1.1.5.1 Control through prevention of transmission. 6
1.1.5.2 Control through therapy . 7
1.1.5.3 Control through vaccines. 11
1.2 Rationale of the study. 13
1.2.1 The glyoxalase system. 13
1.2.1.1 Non-glyoxalase metabolism of methylglyoxal. 17
1.2.2 The thioredoxin reductase system . 19
1.2.3 Methylene blue in antimalarial therapy . 20
1.2.4 Other aspects of the PhD project . 23
1.2.4.1 Glutathionylation of thioredoxin of P. falciparum. 23
1.2.4.2 Lipoamide dehydrogenases of P. falciparum . 24
1.3 Objectives of the study . 25
1.3.1 The glyoxalase system. 25
1.3.2 The thioredoxin reductase of P. falciparum . 25
Table of Contents
1.3.3 Methylene blue in antimalarial chemotherapy . 25
2.1 Materials. 26
2.1.1 Chemicals . 26
2.1.2 Malaria drugs . 26
2.1.3 Enzymes . 26
2.1.4 Antibodies. 27
2.1.6 Instruments . 27
2.1.7 Biological materials . 28
2.1.7.1 cDNA libraries and erythrocytes . 28
2.1.7.2 Plasmids. 28
2.1.7.3 Escherichia coli cells. 28
2.1.7.4 Strains of P. falciparum. 29
2.1.8 Buffers and solutions . 29
2.1.8.1 Solutions for DNA electrophoresis. 29
2.1.8.2 Solutions for protein electrophoresis. 29
2.1.8.3 Solutions for western blotting. 30
2.1.8.4 Extraction of parasites from infected red blood cells . 31
2.1.9 Growth medium. 31
identification. 32
3.3 Cloning and overexpression of genes. 33
3.4 Site-directed mutagenesis . 34
3.5 Purification of glyoxalase enzymes . 34
3.6 SDS-PAGE . 37
3.7 Western blotting . 37
3.8 Concentration of proteins . 38
3.9 Determination of protein concentrations . 38
3.9.1 A280 method . 38
3.9.2 Bradford method. 39
3.10 Enzymatic assays . 39
3.11 Inhibition studies . 41
Table of Contents
3.12 Glutathionylation assays . 42
3.13 Metal ion analysis . 42
3.14 Structure prediction of glyoxalase enzymes . 42
3.15 Protein crystallization . 43
3.15.1 Crystallization screening . 43
3.15.2 Crystallization optimization . 44
3.16 Cell culture experiments . 45
3.16.1 Synchronization . 45
3.16.2 Studies on MB uptake . 46
3.16.3 Determination of enzymatic activity from parasitic extracts. 46
3.16.4 Drug susceptibility tests . 47
3.16.4.1 WHO microtest. 47
3.16.4.2 Semi-automated microdilution method . 49
3.16.4.3 Drug combination assays. 51
3.16.5 Statistics. 52
4.1 The glyoxalase system.53
4.1.1 Recombinant production of P. falciparum glyoxalases . 53
4.1.2 Kinetic characterization. 56
4.1.3 Inhibition studies . 58
4.1.4 Metal ion analysis. 60
4.1.5 Cell culture experiments. 60
4.1.6 Crystallization experiments . 61
4.1.7 Plasmodium falciparum glyoxalase structure predictions. 62
4.2 The inhibition of PfTrxR . 67
4.2.1 Kinetic analyses on isolated enzymes . 67
4.2.2 Effects of the inhibitors on P. falciparum in culture . 68
in vitro antimalarial effects of MB. 69
4.3.1 Stage-specificity of MB action . 69
4.3.2 Studies on MB uptake . 71
4.3.3 Effects of MB upon combination with other drugs . 71
4.3.3.1 Combination of MB with clinically-used antimalarials . 71
4.3.3.2 Combination of MB with artemisinins . 72
characterization of PfLipDHs. 77
Table of Contents
4.5 Glutathionylation of PfTrx . 77
5 Discussion . 80
5.1 The glyoxalase system . 81
5.2 The thioredoxin system . 84
5.3 Methylene blue in antimalarial chemotherapy . 86
5.4 Glutathionylation of PfTrx . 90
6 References. 91
6.2 Websites. 102
Table of Contents
Figure 1: Geographic distribution of malaria around the world. 1
Figure 2: Life cycle of the parasite Plasmodium falciparum. 4
Figure 3: Blood stages of P. falciparum (Malaria Manual, 2003). 5
Figure 4: Diagram of P. falciparum trophozoite residing in an erythrocyte. 7
Figure 5: Structures of selected antimalarial drugs. 9
Figure 6: Malaria life cycle and vaccine targets. 12
Figure 7: Reactions of the glyoxalase system. 14
Figure 8: Physiological formation of 2-oxoaldehydes. 16
Figure 9: Chemical development of antimalarial drugs from methylene blue. 21
Figure 10: Structure of the S-(N-hydroxy-N-arylcarbamoyl)glutathiones. 42
Figure 11: Diagram of hanging drop method. 44
Figure 12: Semi-automated microdilution method: Arrangement of drugs on a 96 well
Figure 13: Alignment of N- and C-terminal halves of P. falciparum glyoxalase I with
human glyoxalase I. 54
Figure 14: Alignment of glyoxalases II. 55
Figure 15: SDS-PAGE of active recombinantly produced P. falciparum glyoxalases. 56
Figure 16: Dixon plots comparing competitive inhibition of (A) HBPC-GSH and (B) S-
p-bromobenzylglutathione on P. falciparum glyoxalase I using the
methylglyoxal-GSH adduct as substrate. 59
Figure 17: Crystals of cGloI. 62
Figure 18: Model of the active sites and hydrophobic binding pocket of GloI based on
the crystal structure of human GloI (Cameron et al., 1999a). 64
Figure 19: Model of tGloII based on the crystal structure of human GloII.….65
Figure 20: Model of the metal binding site of tGloII and cGloII…………………….…66
Figure 21: Model of the glutathione-binding site of tGloII and cGloII……………….66
Figure 22: Cornish-Bowden plot showing that compound 3 inhibits PfTrxR
uncompetitively with respect to PfTrx. 68
Figure 23: Convex isobologram indicating the antagonistic effects of compound 1 upon
combination with chloroquine, methylene blue and artemisinin. 69
Table of Contents
Figure 24: Stage specificity of methylene blue action on the CQ resistant P. falciparum
Figure 25: FIC50 (left) and FIC90-values (right) of MB and CQ determined at various
dosage ratios (1:1, 1:3, and 3:1) and in independent experiments (indicated by
the lines) on CQ-resistant (K1) and CQ-sensitive (3D7) strains of P.
Figure 26: FIC50 (left) and FIC90 values (right) of MB and artemisinin at various fixed
dosage ratios on different P. falciparum strains. 75
Figure 27: Amino acid sequence of recombinant hexa-histidyl-tagged PfTrx indicating
the two peptide fragments spanning the glutathionylated Cys54 (red) of
Figure 28: MALDI-TOF mass spectra of PfTrx peptides. 79
Figure 29: Factors affecting parasite resistance. 81
Table of Contents
Table 1: Factors contributing to development and spread of drug resistance . 11
Table 2: Cloning and overexpression of human and P. falciparum glyoxalase genes.35
Table 3: Purification of P. falciparum and human glyoxalases. 36
Table 4: Optimization of the expression conditions for PfLipDH1 and PfLipDH2. 36
Table 5: Characteristics of Plasmodium falciparum strains employed . 45
Table 6: Kinetic properties of P. falciparum and human glyoxalases I . 57
Table 7: Kinetic properties of P. falciparum and human glyoxalases II . 57
Table 8: IC50 and Ki values of S-(N-aryl-N-hydroxycarbamoyl)glutathiones on human
and P. falciparum glyoxalases. 58
Table 9: Structures of the most potent PfTrxR inhibitors; compounds 1-3 and
corresponding IC50 values on P. falciparum TrxR and human TrxR. 67
Table 10: Clearance of the medium from MB by P. falciparum parasitized erythrocytes
Table 11: Effects of combination of MB with clinically-used antimalarials. 73
Table 12 : In vitro drug combination assays of the artemisinins, piperaquine and
chloroquine with MB on P. falciparum. 76
Table of Contents
Scheme 1: Structure of methylene blue. 20
Scheme 2: The lipoamide dehydrogenase reaction . 24
Absorption at . nm
Artemisinin-based combination therapies
To give a concentration of; to give a volume of
Advanced glycation endproducts
Ammonium persulphate
Methylene blue + chloroquine drug combination
Bovine serum albumin
Counts per minute
Da Dalton DDT
Dimethylsulfoxide
Deoxyribonucleic acid
dNTP Deoxyribonucleotide triphosphate DTE Dithioerythritol DTNB
Dithionitrobenzene
Ethylenediaminetetraacetic acid
Flavin adenine dinucleotide
Fractional inhibitory concentration
Glucose-6-phosphate dehydrogenase
Glyoxalase I-like protein
Glutathione reductase
GSH/GSSG Glutathione (reduced /oxidized) GST
HCPC-GSH S-(N-hydroxy-N-chlorophenylcarbamoyl)glutathione HIV/AIDS Human immunodeficiency virus / Acquired immune deficiency
Histidine rich protein
IC Inhibitory concentration IPTG
Insecticide treated nets
LC/MS/MS Liquid chromatography / Mass spectrometry / Mass spectrometry LDH
Lactate dehydrogenase
MALDI-TOF Matrix-assisted laser desorption ionization – Time of flight MB
4-Morpholinopropane sulfonic buffer
Merozoite surface protein
NADH/NAD+ Reduced /oxidized nicotinamide adenine dinucleotide NADPH/NADP+ Reduced /oxidized nicotinamide adenine dinucleotide phosphate NPRBC
Non-parasitized red blood cells
Nucleotide triphosphates
Polymerase chain reaction
Polyethylene glycol
Plasmodium falciparum
Pentose phosphate pathway
Parasitized red blood cells
Ring-infected erythrocyte surface antigen
Ribonucleic acid
Rounds per minute
S-D-lactoylglutathione
Sodium dodecyl sulphate
SDS-PAGE Sodium dodecyl sulphate – polyacrylamide gel electrophoresis TEMED
Thioredoxin reductase
Unit of enzyme activity (µmol/min)
World Health Organisation
Malaria is a disease caused by protozoan parasites of the genus Plasmodium and is
responsible for about half a billion diseases cases and 2-3 million deaths each year. Much
of the parasite's success to establish persistent infections is attributed to evasion of the
human immune defense system through antigenic variation and increasing development of
resistance to all currently available antimalarial drugs except the artemisinins. The
difference in structure and mode of action of the artemisinins underlines the fact that new
antimalarial drugs – with differential modes of action – are an urgent priority in order to
circumvent plasmodial resistance mechanisms in the absence of effective vaccines or
vector control measures.
By means of rational drug design and re-evaluation of an ancient antimalarial drug, three
new drug development strategies against the deadliest malarial parasite, Plasmodium
falciparum, were developed within the frame of this thesis in order to design possible new
mechanism drugs and prevent resistance development to artemisinin.
First, a complete functional glutathione-dependent glyoxalase (Glo) detoxification system
– comprising a cytosolic GloI (cGloI), a GloI-like protein (GILP) and two GloIIs (cytosolic
GloII named cGloII, and tGloII preceded by a targeting sequence) – was characterized in
direct comparison with the isofunctional human host enzymes. Kinetic and structural
similarities of enzymes of both systems were described; however, striking differences –
especially for the GloIs – were also detected which could be exploited for drug
development. Various S-(N-hydroxy-N-arylcarbamoyl)glutathiones tested as P. falciparum
Glo inhibitors were found to be active in the lower nanomolar range and could be used as
lead structures in the development of more selective inhibitors of the P. falciparum
glyoxalase system (Akoachere et al., 2005).
Secondly, the characterization of the mode of inhibition of three promising inhibitors of the
previously-validated drug target P. falciparum thioredoxin reductase (PfTrxR) is reported
in this thesis. The enzyme is a homodimeric flavoenzyme which reduces thioredoxin (Trx)
via a C-terminally located CysXXXXCys pair. In this respect PfTrxR differs significantly
from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR
is essentially involved in antioxidant defence and redox regulation of the parasite and has
been validated as a drug target. The inhibitors, 4-nitro-2,1,3-benzothiadiazole (IC50 on
PfTrxR = 2 µM), 6,7-nitroquinoxaline (IC50 on PfTrxR = 2 µM), and bis-(2,4-
dinitrophenyl)sulfide (IC50 on PfTrxR = 0.5 µM), showed uncompetitive inhibition with
respect to both substrates, NADPH and thioredoxin. All three inhibitors were active in the
lower micromolar range on the chloroquine resistant P. falciparum strain K1. 4-Nitro-
2,1,3-benzothiadiazole was antagonistic with known antimalarials suggesting that the
inhibitor uses similar routes of uptake and/or acts on related targets or biochemical
pathways (Andricopulo et al., 2005; Andricopulo et al., submitted).
Lastly and most importantly, the renaissance of interest in the ancient antimalarial drug
methylene blue (MB) led to the identification of a potential artemisinin-based combination
therapy (ACT). A strong synergistic action of MB and artemisinin might be capable of
fighting resistant P. falciparum parasites in the field. MB is active against all blood stages
of both chloroquine (CQ)-sensitive and CQ-resistant P. falciparum strains with IC50 values
in the lower nanomolar range. Ring stages showed the highest susceptibility. As
demonstrated by high performance liquid chromatography / tandem mass spectrometry on
different cell culture compartments, MB accumulates in malarial parasites. In drug
combination assays, MB was found to be antagonistic with CQ and other quinoline
antimalarials like piperaquine and amodiaquine; with mefloquine and quinine MB showed
additive effects. In contrast, synergistic effects of MB with artemisinin, artesunate, and
artemether were observed for all tested parasite strains. Artemisinin/MB concentration
combination ratios of 3:1 were found to be advantageous demonstrating that the
combination of artemisinin with a smaller amount of MB can be recommended for
reaching maximal therapeutic effects. In vitro data reported here indicate that combinations
of MB with artemisinin (derivatives) might be a promising option for treating drug
resistant malaria. Resistance development under this drug combination is unlikely to occur
(Akoachere et al., in press).
Taken together, the results support the feasibility of the rational development of new
potential antimalarial drugs. In combination with existing and other promising new
malarial-control measures, new antimalarial drugs could greatly contribute to reducing the
intolerable global burden of this disease.
Malaria ist eine parasitäre Infektionskrankheit, die von Protozoen der Gattung Plasmodium
hervorgerufen wird. Pro Jahr gibt es über 500 Millionen Krankheitsfälle/Neuinfektionen
mit 2-3 Millionen Todesfällen. Ein wichtiger Punkt in der Pathogenese der Malaria ist die
Ausbildung persistierender Infektionen. Antigenetische Variation ermöglicht es dem
Parasiten, das menschliche Immunsystem zu umgehen. Weiterhin sind Plasmodien in der
Lage, auf die eingesetzten Malariamittel mit rascher Resistenzentwicklung zu reagieren.
Deshalb kommen Neu- und Weiterentwicklung von Medikamenten in der Bekämpfung der
Malaria neben Impfstoffentwicklung und Insektiziden Massnahmen gegen den Vektor
eine zentrale Rolle zu. Eine Ausnahme in der zunehmenden Resistenzproblematik bildet
Artemisinin, welches eine andere chemische Zusammensetzung und einen anderen
Wirkmechanismus als andere gegenwärtige Malariamittel aufweist.
In Rahmen dieser Doktorarbeit wurden drei neue Arzneimittelentwicklungs-Strategien
gegen den gefährlichsten human Malariaereger, P. falciparum, verfolgt. Dies erfolgte
anhand von rationaler Medikamententwicklung bzw. durch eine Neubewertung ehemaliger
Malariamittel mit dem Ziel, mögliche neue Wirkmechanismen aufzuzeigen und
Resistenzentwicklung bei Artemisinin zu verhindern.
Der erste dieser verschiedenen Angriffspunkte war die Charakterisierung neuer
Charakterisierung eines Glutathion-abhängigen Glyoxalase (Glo) Systems im Vergleich
zum isofunktionellen humanen System. Dieses System hat eine zentrale Rolle im
Entgiftungsstoffwechsel der Parasiten und besteht aus einer cytosolischen GloI (cGloI),
einem Glo-I ähnlichen Protein (GILP), zwei GloII (cytosolische GloII (cGloII) sowie
tGloII mit einer vorangestellten Targeting-Sequenz). Hier werden kinetische und
strukturelle Ähnlichkeiten im humanen und Plasmodien-System beschrieben und im Sinne
einer Überprüfung als möglicher Arzneimittel-Angriffsort Verschiedenheiten aufgezeigt
Verbindungen wurden als Inhibitoren der Glyoxalasen an P. falciparum getestet, sie waren
im niederen nanomolaren Bereich aktiv. Somit können diese Verbindungen als
Leitsubstanzen für die Entwicklung selektiver Inhibitoren des P. falciparum-Glyoxalase
Systems dienen (Akoachere et al., 2005).
Ein zweiter zentraler Punkt dieser Doktorarbeit ist die Charakterisierung des
Wirkmechanismus von drei vielversprechenden Inhibitoren der bereits als Arzneimittel-
Zielmolekül validierten P. falciparum Thioredoxinreduktase (PfTrxR). Es handelt sich um
ein homodimeres Flavoenzym, welches Thioredoxin mit Hilfe eines C-terminalen
CysXXXXCys-Motives reduziert. Hierbei unterscheidet es sich vom humanen Enzym,
welches an der gleichen Position ein Cys-Sec Redoxpaar beinhaltet. PfTrxR ist essentiell
Abwehrmechanismen
Redoxhomöostase
Plasmodienstoffwechsel. Die Inhibitoren 4-Nitro-2,1,3-Benzothiadiazol (IC50 für PfTrxR =
2 µM), 6,7-Nitroquinoxalin (IC50 = 2 µM) und Bis-2,4-Dinitrophenyl)sulfid (IC50 = 0,5
µM) zeigen eine unkompetitive Hemmung für die beiden Substrate NADPH und
Thioredoxin. Alle drei Inhibitoren sind aktiv im niederen mikromolaren Bereich bei dem
choroquinresistenten P. falciparum Stamm K1. 4-Nitro-2,1,3-Benzothiadiazol zeigt einen
antagonistischen Wirkmechanismus mit anderen bekannten Malariamitteln; dies bedeutet,
dass dieser Hemmstoff entweder einen ähnlichen Aufnahmemechanismus besitzt und/oder
Stoffwechselwegen
(Andricopulo et al., 2005; Andricopulo et al., submitted).
Im Sinne einer Neubewertung früherer Arzneimittel gegen Malaria fokussiert meine
Doktorarbeit auf Methylenblau (MB) in Bezüg auf eine mögliche Artemisinin-gestützte
Kombinationstherapie (ACT: Artemisinin-based combination therapy). Diese Kombination
aus zwei Antimalariamitteln ist ein möglicher Weg, Resistenzenentwicklungen bei
Plasmodium zu vermeiden. Methylenblau ist aktiv gegen alle Blutstadien von Plasmodium
sowohl an chloroquinresistenten Stämmen mit IC50-Werten im niedermolaren Bereich.
Hierbei zeigen Ringstadien die höchste Empfindlichkeit. Darüberhinaus akkumuliert MB
in verschiedenen Zellkompartimenten, dies konnte mit Hilfe von Hochdurchsatz-
Flüssigkeits-Chromatographie bzw. Tandem-Massen-Spektrometrie gezeigt werden. In
Arzneimittel-Kombinations-Assays konnte nachgewiesen werden, dass MB antagonistisch
zu Chloroquin und anderen Quinolinen wie Piperaquin und Amodiaquin wirkt, während es
mit Mefloquin und Quinine einen additiven Effekt zeigt. Im Gegenteil dazu besitzt MB
einen synergistischen Effekt mit Artemisinin, Artesunat und Artemether in allen getesteten
Plasmodienstämmen. Ein Konzentrationsverhältnis von 3:1 zwischen Artemisinin und MB
hat sich als vorteilhaft erwiesen. Dies verdeutlicht, dass geringe Mengen von MB
empfohlen werden können, um maximalen therapeutischen Effekt zu erzielen. Diese hier
berichteten in vitro-Daten unterstützen die Thesen, dass die Kombination aus Artemisinin
(bzw. Artemisininderivaten) und MB eine vielversprechende Möglichkeit in der
therapieresistenter
Resistenzentwicklung gegen die Arzneimittelkombination unwahrscheinlich (Akoachere et
Zusammenfassend kann man sagen, dass diese Resultate die Eignung der rationalen
Arzneimittelentwicklung für neue Antimalariamittel unterstreichen. In Kombination mit
existierenden Arzneimitteln und zusammen mit anderen Kontrollmechanismen können
neue Antimalariamittel dazu beitragen, die intolerierbare, weltweite Bedrohung durch
Malaria zu verringern.
Source: http://www.shaker.nl/nl/content/catalogue/Element.asp?ID=&Element_ID=25962&Mode=Page
MANUAL PRÁCTICO DE RIEGO Autores: María José Moñino Espino*, Alberto Samperio Sainz-Aja, Antonio Vivas Cacho, Fernando Blanco Cipollone, María del Henar Prieto Losada. Centro de Investigaciones Científicas y Tecnológicas de Extremadura. CICYTEX. Instituto de Investigación Agraria Finca "La Orden-Valdesequera" Departamento de Hortofruticultura. Grupo de riego y nutrició[email protected]
LEY GENERAL DE LA ADMINISTRACION PÚBLICA1 DECRETO NÚMERO 146-862 EL CONGRESO NACIONAL, CONSIDERANDO: Que el creciente desarrollo de la actividad social y económica en nuestro país, ha impuesto condiciones a la actividad estatal, que no conviene desatender. CONSIDERANDO: Que el Gobierno de la República, se ha empeñado en la ejecución de los planes nacionales de desarrollo para elevar el nivel de vida a los habitantes y asegurarles su bienestar económico y social.